安 靖(1981—),女,博士研究生,副教授,研究方向为军事运筹学、战争设计系统工程。 |
刘 伟(1982—),男,博士,高级工程师。 |
Copy editor: 李楠
收稿日期: 2023-02-20
修回日期: 2023-03-22
网络出版日期: 2024-05-29
基金资助
* 全军军事类研究生资助课题(JY2020B031)
Key technologies of operational concept capability requirement analysis based on deep reinforcement learning
Received date: 2023-02-20
Revised date: 2023-03-22
Online published: 2024-05-29
在形式化描述作战概念能力需求分析问题的基础上,设计了一种基于深度强化学习的作战概念能力需求分析方法,重点对该方法的仿真实验、代理模型、强化学习等关键技术进行了分析和研究。通过关键技术的实现,该方法能够获取高可信度的仿真小样本数据集;基于经验数据构建作战概念的代理模型,并输入高可信度仿真数据集,应用多目标优化算法对代理模型进行优化训练;最后,将训练得到的代理模型与深度强化学习框架进行交互寻优,实现作战概念能力需求的反向探索。
关键词: 作战概念能力需求分析; 深度强化学习; 代理模型; 仿真推演
安靖 , 刘伟 , 周杰 . 基于深度强化学习的作战概念能力需求分析关键技术*[J]. 指挥控制与仿真, 2024 , 46(3) : 18 -24 . DOI: 10.3969/j.issn.1673-3819.2024.03.003
Based on the formal description of the operational concept capability requirement analysis, a method of operational concept capability requirement analysis based on DRL(deep reinforcement learning) is designed. The key technologies of this method, such as simulation experiment, surrogate model, reinforcement learning, are analyzed and studied. Through the implementation of key technologies,small sample data sets with high reliability can be obtained through simulation experiments; Based on the experience data, the surrogate model of operation concept is constructed, and the model is optimized and trained by using multi-objective optimization algorithm with the high credibility simulation data set as the input; Finally, the surrogate model obtained from the training and the DRL framework are interactively optimized to achieve the reverse exploration of the operational concept capability requirements.
[1] |
孙磊, 潘寒尽. 陆军航空兵作战概念设计与推演验证方法研究[J]. 陆军航空兵学院学报, 2019, 18(8):6-9.
|
[2] |
吴航海. 两栖登陆作战方案的规划与评估分析[D]. 南京: 南京理工大学, 2017.
|
[3] |
罗鹏程, 周经伦, 金光. 武器装备体系作战效能与作战能力评估分析方法[M]. 北京: 国防工业出版社, 2014.
|
[4] |
何喜军, 马珊, 武玉英, 等. 小样本下多维指标融合的电商产品销量预测[J]. 计算机工程与应用, 2019, 55(15):177-184.
|
[5] |
安靖, 刘伟, 顾泽宇, 等. 面向作战概念开发的能力需求分析方法综述[J]. 军事运筹与评估, 2022, 36(4): 75-80.
|
[6] |
胡晓峰, 杨镜宇, 张明智. 战争复杂体系能力分析与评估研究[M]. 北京: 科学出版社, 2019.
|
[7] |
|
[8] |
李斌, 刘苏洋, 李春洪, 等. 探索性仿真实验仿真想定空间筛选[J]. 火力与指挥控制, 2012, 37(S1):142-145,148.
|
[9] |
|
[10] |
田尧, 陈庆印. 基于博弈论的海外战略投送决策分析方法[J]. 军事交通学院学报, 2021, 23(4): 19-23.
|
[11] |
姚桐, 王越, 董岩, 等. 深度强化学习在作战任务规划中的应用[J]. 飞航导弹, 2020(4): 16-21.
|
[12] |
吴昭欣, 李辉, 王壮, 等. 基于深度强化学习的智能仿真平台设计[J]. 战术导弹技术, 2020(4): 193-200.
|
[13] |
于博文, 吕明, 张捷. 基于分层强化学习的联合作战仿真作战决策算法[J]. 火力与指挥控制, 2021, 46(10): 140-146.
|
[14] |
石鼎, 燕雪峰, 宫丽娜, 等. 强化学习驱动的海战场多智能体协作战仿真算法[J]. 系统仿真学报, 2023, 35(4): 786-796.
|
[15] |
梁星星, 冯旸赫, 马扬, 等. 多Agent深度强化学习综述[J]. 自动化学报, 2020, 46(12): 2537-2557.
|
[16] |
安靖, 司光亚, 张雷. 基于深度强化学习的立体投送策略优化方法研究[J]. 系统仿真学报, 2024, 36(1): 39-49.
|
[17] |
安靖, 司光亚, 严江. 基于深度强化学习的作战概念能力需求分析[J]. 指挥控制与仿真, 2023, 45(5): 1-9.
|
/
〈 |
|
〉 |