1 航空声呐探测模型
1.1 水声传播模型
p(x)=eiωτ(x)
| ∇τ |2=
∫V∇·FdV=∫∂VF·ndS
J=r
∇2τ=
A0(s)=A0(0)
p(s)=
1.2 探测距离模型
SL-2TL+TS-(NL-DI)=DT
SL-TL-NL+DI=DT
FOM=
FOM=SL-NL-DT+DI
|
董彩萍(1986—),女,硕士,讲师,研究方向为水声工程。 |
|
郑晓庆(1989—),男,博士,副教授。 |
收稿日期: 2025-06-03
修回日期: 2025-07-11
网络出版日期: 2025-09-25
Research on the use of aerial sonar under deep sea conditions
Received date: 2025-06-03
Revised date: 2025-07-11
Online published: 2025-09-25
董彩萍 , 郑晓庆 , 崔双月 , 张津华 . 深海条件下航空声呐使用研究[J]. 指挥控制与仿真, 2025 , 47(5) : 18 -23 . DOI: 10.3969/j.issn.1673-3819.2025.05.003
In this paper, the use of airborne sonar under deep sea conditions is studied. The sonar detection distance model is established by using the sonar equation. Based on the analysis of the structure and variation characteristics of the deep-sea sound velocity profile, the underwater sound field distribution under different deep-sea sound velocity profile structures and different sonar detection depths is simulated by using the ray acoustic model. The submarine’s activity law is analyzed, and the relationship between the sonar working depth and the average detection distance is obtained. The results show that under deep sea conditions, the increase of the working depth of the airborne sonar is beneficial to the detection of unknown depth targets. The research results have guiding significance for guiding the use of aerial sonar in deep sea conditions.
p(x)=eiωτ(x)
| ∇τ |2=
∫V∇·FdV=∫∂VF·ndS
J=r
∇2τ=
A0(s)=A0(0)
p(s)=
SL-2TL+TS-(NL-DI)=DT
SL-TL-NL+DI=DT
FOM=
FOM=SL-NL-DT+DI
| [1] |
张本辉, 门金柱, 姚科明, 等. 舰载直升机反潜作战使用研究综述[J]. 电光与控制, 2019, 26(8): 60-66, 89
|
| [2] |
孙明太. 航空反潜装备[M]. 北京: 国防工业出版社, 2012.
|
| [3] |
鲜勇, 鲁宏捷, 李佳庆. 国外航空声呐浮标发展综述[J]. 电光与控制, 2019, 26(8): 67.
|
| [4] |
郁红波, 鞠建波, 杨少伟. “浅海” 条件下声呐浮标最佳入水深度[J]. 探测与控制学报, 2020, 42(5): 97-101.
|
| [5] |
窦雨芮, 周其斗, 纪刚, 等. 声速剖面主导的浅海声传播最佳深度规律研究[J]. 中国舰船研究, 2020, 15(5): 102-113.
|
| [6] |
张飞飞, 赵申东, 刘朝晖, 等. 近浅海条件下被动声呐浮标使用深度分析与研究[J]. 舰船科学技术, 2018, 40(5): 128-131.
|
| [7] |
章尧卿, 胡柱喜, 刘克. 基于声速梯度的声呐浮标工作深度选择[J]. 舰船电子工程, 2018, 38(9): 138-142.
|
| [8] |
熊雄, 单志超, 吴芳, 等. 水下目标探测中声呐工作深度优化选择[J]. 声学技术, 2018, 37(6): 267-268.
|
| [9] |
单志超, 熊雄, 范赵鹏, 等. 典型温深剖面下浮标深度档位对被动探潜影响[J]. 声学技术, 2018, 37(6):173-174.
|
| [10] |
曲晓慧, 单志超, 陈建勇, 等. 深海声速剖面对吊放声呐探测距离的影响研究[J]. 计算机仿真, 2012, 29(5): 144-147.
|
| [11] |
芬恩·B., (意)威廉·A. 库珀曼(William A. Kuperman), (美)米切尔·B. 波特(Michael B. Porter), 等. 计算海洋声学[M]. 2版. 北京: 国防工业出版社, 2017.
|
| [12] |
刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨: 哈尔滨工程大学出版社, 2010.
|
/
| 〈 |
|
〉 |