1 背景
1.1 参考向量进化算法(RVEA)
1.2 贝叶斯最大信息熵思想
2 基于最大信息熵的多目标优化
2.1 确定整个种群空间的理想点
2.2 参考点设置
| 基于最大信息熵的多目标优化算法 |
|---|
| 输入:最大代数tmax;参考向量数N;单位参考向量集V0={v01,…,v0n}; |
| 输出:种群Ptmax中的非支配解集 |
| 1:创建一个含有N个随机个体的初始种群p0,并设置迭代计数器t=0 |
| 2:生成理想解向量I |
| 3:while t<tmax do |
| 4:生成子代种群Qt |
| 5:结合父代种群和子代种群,Lt=PtUQt |
| 6:选择下一代种群(Pt+1) |
| 7:基于贝叶斯最大信息熵产生新参考向量(Vt+1) |
| 8:end while |
3 数值实验
3.1 参数设置
表1 由K-RVEA、RVEA 和ParEGO 获得的IGD 值的统计结果Tab.1 Statistical results of IGD values obtained by K-RVEA, RVEA and ParEGO |
| 问题 | k | K-RVEA | RVEA | ParEGO | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DTLZ1 | 3 4 6 8 10 | min 82.03 48.23 8.031 0.699 0.198 | mean 106.9 73.21 28.83 6.991 0.347 | max 125.2 101.4 35.22 13.29 0.655 | ≈ ≈ ≈ ≈ ≈ | min 42.65 39.65 12.24 1.250 0.193 | mean 82.87 59.18 22.94 7.406 0.339 | max 115.1 97.71 36.85 15.66 1.105 | ↓ ↓ | min 13.42 18.63 | mean 52.47 45.45 | max 112.7 87.76 |
DTLZ2 | 3 4 6 8 10 | 0.092 0.191 0.316 0.360 0.419 | 0.155 0.276 0.342 0.395 0.446 | 0.262 0.376 0.362 0.522 0.470 | ↑ ↑ ↑ ↑ ↑ | 0.227 0.280 0.375 0.466 0.539 | 0.288 0.332 0.404 0.541 0.608 | 0.335 0.383 0.440 0.704 0.733 | ↑ ↑ | 0.151 0.289 — — — | 0.191 0.337 — — — | 0.243 0.408 — — — |
DTLZ3 | 3 4 6 8 10 | 181.5 85.56 61.61 12.36 0.781 | 280.1 210.9 105.0 26.49 1.299 | 353.1 314.5 156.4 43.51 2.303 | ≈ ≈ ≈ ≈ ≈ | 133.7 89.95 43.54 8.569 0.761 | 256.1 198.6 95.97 25.27 1.228 | 347.9 306.3 157.7 42.17 1.836 | ↓ ↓ | 81.15 66.93 — — — | 145.5 138.1 — — — | 261.6 209.4 — — — |
DTLZ4 | 3 4 6 8 10 | 0.190 0.268 0.422 0.547 0.553 | 0.448 0.458 0.585 0.635 0.608 | 0.737 0.648 0.754 0.728 0.672 | ≈ ≈ ≈ ≈ ↑ | 0.205 0.320 0.503 0.554 0.599 | 0.399 0.514 0.615 0.628 0.667 | 0.959 0.737 0.800 0.731 0.761 | ↑ ↑ | 0.387 0.505 — — — | 0.646 0.725 — — — | 0.947 0.960 — — — |
DTLZ5 | 3 4 6 8 10 | 0.050 0.046 0.032 0.023 0.009 | 0.112 0.123 0.102 0.048 0.017 | 0.211 0.242 0.153 0.107 0.022 | ↑ ↑ ↑ ↑ ↑ | 0.201 0.149 0.159 0.104 0.224 | 0.247 0.294 0.280 0.260 0.488 | 0.316 0.393 0.431 0.748 0.746 | ↓ ↑ | 0.039 0.090 — — — | 0.055 0.288 — — — | 0.072 0.428 — — — |
DTLZ6 | 3 4 6 8 10 | 2.121 1.306 1.133 0.377 0.054 | 2.727 2.446 1.597 0.660 0.153 | 3.343 3.060 2.174 1.049 0.373 | ↑ ↑ ↑ ↑ ↑ | 3.651 3.027 1.025 0.247 0.140 | 4.960 4.044 2.524 1.004 0.297 | 5.613 5.208 3.600 1.870 0.751 | ↑ ↑ | 5.030 5.652 — — — | 6.378 5.916 — — — | 6.867 6.034 — — — |
DTLZ7 | 3 4 6 8 10 | 0.088 0.188 0.391 0.745 0.917 | 0.111 0.243 0.500 0.886 1.030 | 0.150 0.298 0.627 1.030 1.134 | ↑ ↑ ↑ ↑ ↑ | 0.400 0.532 0.889 1.162 1.343 | 0.515 0.691 1.088 1.359 1.900 | 0.637 0.926 1.808 1.634 3.327 | ↑ ↑ | 0.621 0.719 — — — | 0.829 0.892 — — — | 1.201 1.149 — — — |
表2 通过K-RVEA、RVEA、ParEGO、SMS-EGO和MOEA/D-EGO对3个和4个目标获得的IGD值的统计结果,分别进行了120和115个功能评估Tab.2 Statistical results of IGD values obtained by K-RVEA, RVEA, ParEGO, SMS-EGO and MOEA/D-EGO for 3 and 4 targets were used for 120 and 115 functional evaluations, respectively |
| 问题 | 目标数 | K-RVEA | RVEA | ParEGO | SMS-EGO | MOEA/D-EGO | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| DTLZ1 | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | ↑ | Min | Mean | Max | Min | Mean | Max | ||||
| 3 | 82.01 | 130.2 | 171.0 | ≈ | 66.20 | 128.8 | 171.4 | ≈ | 100.6 | 124.1 | 148.9 | ↑ | 85.48 | 114.3 | 148.9 | ↑ | 173.0 | 266.9 | 388.2 | |
| 4 | 61.91 | 90.29 | 115.6 | ≈ | 81.54 | 102.4 | 133.5 | ≈ | 75.21 | 99.82 | 128.6 | ↑ | 93.35 | 130.1 | 173.9 | — | — | — | ||
| DTLZ2 | 3 | 0.306 | 0.360 | 0.408 | ↑ | 0.402 | 0.438 | 0.487 | ≈ | 0.272 | 0.356 | 0.397 | ↑ | 0.365 | 0.445 | 0.523 | ↑ | 0.325 | 0.385 | 0.456 |
| 4 | 0.375 | 0.427 | 0.464 | ↑ | 0.423 | 0.465 | 0.511 | ≈ | 0.385 | 0.422 | 0.476 | ≈ | 0.447 | 0.489 | 0.533 | — | — | — | ||
| DTLZ3 | 3 | 217.4 | 324.3 | 383.7 | ≈ | 237.6 | 366.8 | 494.2 | ≈ | 232.5 | 368.3 | 460.7 | ≈ | 220.8 | 325.3 | 459.2 | ≈ | 189.6 | 339.8 | 523.40 |
| 4 | 173.9 | 302.1 | 370.2 | ≈ | 179.3 | 284.1 | 358.6 | ≈ | 172.6 | 291.8 | 357.1 | ≈ | 209.1 | 314.2 | 403.8 | — | — | — | ||
| DTLZ4 | 3 | 0.453 | 0.710 | 0.977 | ≈ | 0.539 | 0.677 | 0.966 | ≈ | 0.588 | 0.768 | 0.911 | ≈ | 0.647 | 0.691 | 0.723 | ↓ | 0.395 | 0.435 | 0.479 |
| 4 | 0.586 | 0.749 | 0.914 | ≈ | 0.671 | 0.802 | 0.927 | ≈ | 0.717 | 0.818 | 0.993 | ↑ | 0.681 | 0.746 | 0.816 | — | — | — | ||
| DTLZ5 | 3 | 0.174 | 0.281 | 0.361 | ≈ | 0.273 | 0.327 | 0.396 | ↑ | 0.598 | 0.614 | 0.638 | ↑ | 0.447 | 0.498 | 0.547 | ↓ | 0.170 | 0.215 | 0.309 |
| 4 | 0.227 | 0.255 | 0.302 | ↑ | 0.249 | 0.289 | 0.315 | ↑ | 0.443 | 0.456 | 0.485 | ↓ | 0.361 | 0.413 | 0.466 | — | — | — | ||
| DTLZ6 | 3 | 3.111 | 3.972 | 4.630 | ↑ | 5.739 | 6.111 | 6.464 | ↑ | 6.506 | 6.709 | 6.826 | ↑ | 1.602 | 1.756 | 2.008 | ↑ | 4.075 | 5.079 | 6.625 |
| 4 | 2.956 | 3.911 | 4.588 | ↑ | 4.407 | 5.038 | 5.630 | ↑ | 5.722 | 5.869 | 6.026 | ↓ | 5.843 | 5.884 | 6.011 | — | — | — | ||
| DTLZ7 | 3 | 0.121 | 0.166 | 0.218 | ↑ | 0.634 | 0.761 | 1.271 | ↑ | 3.137 | 5.575 | 7.418 | ↓ | 0.241 | 0.261 | 0.277 | ↑ | 0.618 | 1.750 | 3.840 |
| 4 | 0.295 | 0.400 | 0.649 | ↑ | 0.779 | 1.019 | 1.219 | ↑ | 5.306 | 7.377 | 8.922 | ↑ | 0.578 | 0.645 | 0.706 | — | — | — | ||
表3 通过K-RVEA和MOEA/D-EGO对3个目标进行300次功能评价后获得的IGD值的统计结果Tab.3 Statistical results of IGD values obtained after 300 functional evaluations of the three targets by K-RVEA and MOEA/D-EGO |
| 问题 | K-RVEA | MOEA/D-EGO | |||||
|---|---|---|---|---|---|---|---|
| min | mean | max | ↑ | min | mean | max | |
| DTLZ1 | 82.03 | 106.5 | 125.2 | ≈ | 145.9 | 177.9 | 224.5 |
| DTLZ2 | 0.092 | 0.155 | 0.262 | ≈ | 0.081 | 0.103 | 0.212 |
| DTLZ3 | 181.5 | 280.1 | 353.1 | ≈ | 161.5 | 205.9 | 281.8 |
| DTLZ4 | 0.190 | 0.448 | 0.737 | ≈ | 0.357 | 0.436 | 0.574 |
| DTLZ5 | 0.050 | 0.115 | 0.211 | ↓ | 0.035 | 0.046 | 0.071 |
| DTLZ6 | 2.121 | 2.764 | 3.343 | ≈ | 0.491 | 2.551 | 4.126 |
| DTLZ7 | 0.088 | 0.112 | 0.150 | ↑ | 0.154 | 0.646 | 1.254 |
3.2 DTLZ问题的性能
图2 由K-RVEA、RVEA、ParEGO和MOEA/D-EGO得到的非支配解用圆表示,3个目标DTLZ7的IGD值最好,其中点代表帕累托前沿Fig.2 The non-dominated solutions obtained by K-RVEA, RVEA, ParEGO and MOEA/D-EGO are represented by circles, and the IGD values of the three targets DTLZ7 are the best, where the points represent the Pareto frontier |
中国指挥与控制学会会刊 