范学满(1989—),男,山东青岛人,博士,助理研究员,研究方向为智能辅助决策。 |
王新鹏(1989—),男,助理工程师。 |
Copy editor: 张培培
收稿日期: 2021-05-20
修回日期: 2021-06-21
网络出版日期: 2022-05-09
版权
Research on Task Assignment Method of Multi-UUV Cooperative Reconnaissance Based on Hybrid Optimization Algorithm
Received date: 2021-05-20
Revised date: 2021-06-21
Online published: 2022-05-09
Copyright
针对多UUV系统静态任务规划过程中,任务分配与航路规划相对独立造成的总体方案次优性问题,将非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm Ⅱ, NSGA-Ⅱ)与动态规划算法相结合,提出一种混合优化算法。将NSGA-Ⅱ作为总体优化框架,为各UUV分配任务子集;将动态规划算法用于各UUV的任务子集,基于最短路径准则优化得到各UUV的任务序列;根据任务序列进行任务分配方案的评估与优选。基于典型想定进行仿真实验,结果表明,通过将动态规划算法嵌入NSGA-Ⅱ优化框架,在任务分配过程中显式地考虑任务执行顺序对方案性能的影响,能够提升寻优方案的质量,加快NSGA-Ⅱ寻优过程的收敛。
范学满 , 王新鹏 , 薛昌友 . 基于混合优化算法的多UUV协同侦察任务分配方法研究[J]. 指挥控制与仿真, 2021 , 43(6) : 94 -99 . DOI: 10.3969/j.issn.1673-3819.2021.06.017
In order to alleviate the sub-optimal problem of the scheme, caused by the relative independence of task assignment and route planning, in the process of static task planning of multi-UUV, a hybrid optimization algorithm is proposed by the means of combining non dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) with dynamic programming algorithm. NSGA-Ⅱ is used as the overall optimization framework to assign tasks to each UUV. Then, the dynamic programming algorithm is applied to each UUV task subset to obtain the task sequence based on the shortest path criterion, which is used evaluate and optimize the task allocation scheme. The simulation results based on typical scenarios show that by embedding dynamic programming algorithm into NSGA-Ⅱ optimization framework and explicitly considering the influence of task execution order on the performance of the scheme in the process of task assignment, the quality of the optimization scheme can be improved and the convergence of NSGA-Ⅱ optimization process can be accelerated.
Key words: task assignment; cooperative reconnaissance; NSGA-Ⅱ; dynamic programming; multi-UUV
[1] |
严浙平, 刘祥玲. 多UUV协调控制技术研究现状及发展趋势[J]. 水下无人系统学报, 2019, 27(3):226-231.
|
[2] |
张建库. 海洋环境下UUV协同任务规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
|
[3] |
李大东, 孙秀霞, 孙彪, 等. 基于混合整数线性规划的无人机任务规划[J]. 飞行力学, 2010, 28(5):90-93.
|
[4] |
|
[5] |
琚忠明, 孟令, 方小马, 等. 基于遗传算法的任务分配与调度[J]. 自动化应用, 2018, 9(6):66-68.
|
[6] |
李建军. 基于TSP动态规划的巡查线路排班问题研究[J]. 现代信息科技, 2019, 3(1):155-157.
|
[7] |
|
[8] |
|
[9] |
姚亚宁, 杨风暴, 吉琳娜, 等. 基于迭代寻优策略合同网协议的任务分配算法[J]. 指挥控制与仿真, 2020, 42(4):51-56.
|
[10] |
马硕, 马亚平. 异构无人系统群协同作战任务规划方法[J]. 指挥控制与仿真, 2019, 41(2):24-30.
|
[11] |
赵慧娟, 汤兵勇, 张云. 基于动态规划法的物流配送路径的随机选择[J]. 计算机应用与软件, 2013, 30(4):110-112.
|
[12] |
张守京, 王彦亭. 基于改进NSGA2的柔性车间多目标智能调度问题研究[J]. 现代制造工程, 2020(9):23-31.
|
[13] |
Jazzbin, et al. Geatpy: the Genetic and Evolutionary Algorithm Toolbox with High Performance in Python[EB/OL]. http://www.geatpy.com/, 2020.
|
/
〈 |
|
〉 |