|
陈金鑫(1993-),男,河北沧州人,硕士,研究方向为无人艇运动控制。 |
|
董 蛟(1991-),男,硕士。 |
Copy editor: 许韦韦
收稿日期: 2018-09-06
网络出版日期: 2022-05-16
Robot Path Planning Based on Improved Artificial Potential Field Method
Received date: 2018-09-06
Online published: 2022-05-16
针对传统人工势场法应用于移动机器人路径规划存在的局部极小等缺陷,提出了改进的人工势场模型:以四幅典型环境场景为例,分析了人工势场法中局部极小点问题的成因;引入斥力偏转模型,引导机器人在路径规划时避开局部极小点;引入斥力增益系数函数,进一步优化路径规划中航向改变过大的问题;建立规划路径评价模型,对提出的改进人工势场模型下路径规划的优劣给出量化评价。该模型通过修正斥力方向,减小了规划路径的长度以及曲度,降低了对机器人机动性能的要求。仿真结果表明,该模型在解决部分局部极小问题的同时,提高了规划路径的质量,较好解决了静态环境下机器人的路径规划问题。
陈金鑫 , 董蛟 , 朱旭芳 . 改进人工势场法的移动机器人路径规划[J]. 指挥控制与仿真, 2019 , 41(3) : 116 -121 . DOI: 10.3969/j.issn.1673-3819.2019.03.025
When using traditional artificial potential field method for path planning of mobile robots, there are problems such as local minimum. In response to the problems, an artificial potential field improvement model is proposed. Taking four typical environmental scenarios as examples, the causes of the local minimum problem in the artificial potential field method are analyzed. Repulsive deflection model is introduced to guide the robot to avoid local minima during path planning. Repulsive gain coefficient function is introduced to further optimize the problem of excessive heading changes in path planning. Planning path evaluation model is established to give a quantitative assessment of the merits of path planning. The improved model significantly reduces the length and curvature of the planned path by correcting the direction of the repulsive force. Therefore, it reduces the requirements for robot maneuverability. The simulation results show that the model can improve the quality of the planning path while solving the local minimum problem of static path planning.
| [1] |
莫栋成. 移动机器人路径规划算法的研究与应用[D]. 无锡: 江南大学, 2014.
|
| [2] |
|
| [3] |
于振中, 闫继宏, 赵杰, 等. 改进人工势场法的移动机器人路径规划[J]. 哈尔滨工业大学学报, 2011, 43(1): 50-55.
|
| [4] |
丁家如, 杜昌平, 赵耀, 等. 基于改进人工势场法的无人机路径规划算法[J]. 计算机应用, 2016, 36(1): 287-290.
|
| [5] |
|
| [6] |
|
| [7] |
魏然. 基于人工势场理论的多移动机器人的协同控制研究[D]. 武汉: 华中科技大学, 2007.
|
| [8] |
张殿富, 刘福. 基于人工势场法的路径规划方法研究及展望[J]. 计算机工程与科学, 2013, 35(6): 88-95.
|
| [9] |
霍凤财, 任伟建, 刘东辉. 基于改进的人工势场法的路径规划方法研究[J]. 自动化技术与应用, 2016, 35(3):63-67.
|
| [10] |
|
| [11] |
刘满禄, 张华, 胡天链. 改进的人工势场法用于移动机器人导航[J]. 华中科技大学学报(自然科学版), 2008, 36(S1):177-180.
|
| [12] |
魏云霞. 基于改进人工势场法的移动机器人路径规划的研究[D]. 北京: 北方工业大学, 2014.
|
| [13] |
周文卷. 复杂环境下自主移动机器人路径规划方法的研究[D]. 长春: 吉林大学, 2014.
|
| [14] |
温素芳, 郭光耀. 基于改进人工势场法的移动机器人路径规划[J]. 计算机工程与设计, 2015, 36(10):2818-2822.
|
| [15] |
|
| [16] |
鲁新军, 陈焕文, 谢丽娟, 等. 机器人导航中势场局部最小的水流解决法[J]. 微计算机信息, 2009, 25(2):241-242.
|
| [17] |
张莉, 周杰. 改进的足球机器人局部极小值的研究[J]. 西安工程大学学报, 2014, 28(5):620-625.
|
| [18] |
刘建华, 杨建国, 刘华平, 等. 基于势场蚁群算法的移动机器人全局路径规划方法[J]. 农业机械学报, 2015, 46(9): 18-27.
|
| [19] |
翟红生, 王佳欣. 基于人工势场的机器人动态路径规划新方法[J]. 重庆邮电大学学报(自然科学版), 2015, 27(6):814-818.
|
/
| 〈 |
|
〉 |