1 问题描述
1 概率分类方法[3]
2 分类判据
3 搜索次数
表1 常用分类判据表(p1=0.2,p2=0.6,P0=0.95) |
搜索次数k | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|
判据 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 |
发现率P2=1-Q2 | 0.36 | 0.648 | 0.821 | 0.913 | 0.821 | 0.904 | 0.826 | 0.901 | 0.945 | 0.901 |
探雷声纳目标的概率分类技术*
马爱民(1956-),男,北京人,博士,教授,博士生导师,研究方向为水中兵器作战使用与仿真。 |
收稿日期: 2016-12-06
修回日期: 2017-02-17
网络出版日期: 2022-05-18
基金资助
国防预研基金(3020604010302)
Probability Classification Method for Mine Detection Sonar Targets
Received date: 2016-12-06
Revised date: 2017-02-17
Online published: 2022-05-18
马爱民 . 探雷声纳目标的概率分类技术*[J]. 指挥控制与仿真, 2017 , 39(3) : 1 -4 . DOI: 10.3969/j.issn.1673-3819.2017.03.001
The targets which found by mine detection sonar while searching sea bed are large quantity and can't be found again easily. The current measures are difficult to classify the mines from the sonar targets. Now a new method has been developed to do this efficiently, which based on the difference between the targets' detecting probabilities acquired from multiple searches. The method has been approved effective when it applies on some practical examples. The results express that a large percentage of lower probability targets are rejected, the numbers of reserved targets are reduced obviously and the comprehensive effectiveness of the mine-detection sonar is raised remarkably.
表1 常用分类判据表(p1=0.2,p2=0.6,P0=0.95) |
搜索次数k | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|
判据 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 |
发现率P2=1-Q2 | 0.36 | 0.648 | 0.821 | 0.913 | 0.821 | 0.904 | 0.826 | 0.901 | 0.945 | 0.901 |
[1] |
马爱民. 猎扫雷作战效果评估与控制[M]. 北京: 国防工业出版社, 2000.
|
[2] |
马爱民. 基于漏搜信息的剩余水雷评估模型[J]. 指挥控制与仿真, 2013, 35(6):1-4,16.
|
[3] |
李庆民, 王红卫, 李华, 等. 基于双Markov链的效果评估模型研究[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(3):460-463.
|
[4] |
马爱民. 反水雷作战剩余危险指标的选择与确定[J]. 海军学术研究, 2015(10):22-23.
|
[5] |
|
[6] |
|
/
〈 |
|
〉 |