Command Control and Simulation >
Ship behavior estimation method and software implementation based on track mining
Received date: 2023-05-10
Revised date: 2023-06-14
Online published: 2023-12-07
It is always difficult to analyze the law of ship movement, especially the behavior of ship. In this paper, a frequent pattern mining method based on a large number of historical track clustering of ships is proposed to estimate the future behavior of ships, and the software implementation is presented. In this paper, a comprehensive similarity measurement method of track is proposed and the meaning of frequent pattern mining based on track clustering is introduced. Secondly, the adaptive transformation of the classical density clustering algorithm is carried out and the implementation method of the clustering algorithm based on comprehensive similarity is given. Then, the most similar cluster of virtual trunk track calculation is extracted, and the estimation results of current ship behavior are obtained by statistics. Finally, the software design and test results based on C/S architecture are given. Experimental results show that this method can describe the behavior of track association, and the behavior estimation results obtained by the software can assist the research and judgment.
LIANG Jingjing , WEI Qian . Ship behavior estimation method and software implementation based on track mining[J]. Command Control and Simulation, 2023 , 45(6) : 64 -69 . DOI: 10.3969/j.issn.1673-3819.2023.06.10
[1] |
唐艺灵. 基于AIS数据的民船行为预测与区域告警方法研究[J]. 指挥控制与仿真, 2022, 44(5):97-101.
|
[2] |
刘又嘉. 基于AIS的船舶轨迹航路提取方法及系统实现[D]. 大连: 辽宁师范大学, 2021.
|
[3] |
孙杨. 基于AIS大数据的船舶轨迹分析系统的设计与实现[D]. 北京: 北京邮电大学, 2021.
|
[4] |
程立龙. 基于AIS数据的船舶轨迹停留特征时空分析研究[D]. 南京: 南京师范大学, 2020.
|
[5] |
钟原, 郑文龙, 李祥, 等. 基于共享内存管理的海量AIS目标态势显示系统[J]. 网络安全技术与应用, 2021(3): 35-36.
|
[6] |
金梁. 基于AIS数据的船舶行为可视分析研究[D]. 武汉: 武汉理工大学, 2016.
|
[7] |
成磊峰. 基于历史规律的目标行为变化预测方法[J]. 指挥信息系统与技术, 2022, 13(1): 30-33, 50.
|
[8] |
吴达, 吕锐, 杨宇, 等. 基于动态时间规整下密度聚类的轨迹识别研究[J]. 火力与指挥控制, 2021, 46(10): 73-78.
|
[9] |
陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38(8): 1847-1853.
|
[10] |
王超. 基于轨迹聚类的频繁模式挖掘方法[D]. 杭州: 浙江大学, 2021.
|
[11] |
顾昱骅. 地理时空大数据高效聚类方法研究[D]. 杭州: 浙江大学, 2018.
|
[12] |
刘勇. 基于DBSCAN的空间聚类算法研究与实现[D]. 昆明: 云南大学, 2017.
|
[13] |
王莉莉, 彭勃. 基于特征航迹简化模型的中心航迹提取研究[J]. 计算机应用研究, 2019, 36(1): 49-52.
|
/
〈 |
|
〉 |