Command Control and Simulation >
Review on Knowledge Graph Techniques
Received date: 2021-06-01
Revised date: 2021-06-28
Online published: 2022-05-09
Copyright
As an efficient and intelligent means of knowledge organization, knowledge graphs can help users quickly and accurately obtain the information they care about, and it has developed rapidly in recent years. Knowledge graphs, deep learning, big data and other technologies have become the core force to promote the development of artificial intelligence. Starting from the basic concepts of knowledge graphs, the article systematically analyzes the logical structure, technical architecture and construction methods of knowledge graphs. Afterwards, it focuses on the full life cycle technology of knowledge graphs, from knowledge modeling, acquisition, fusion, processing, storage, reasoning and the typical applications of knowledge graphs and other aspects explain the domestic and foreign research progress of key technologies used in the construction of knowledge graphs. Then, it introduces the use of knowledge graphs in intelligent semantic search, knowledge question and answer systems, and vertical industries such as public security, medical treatment, and industrial production. Finally, the future development trend of the knowledge map and the many challenges that exist at present are discussed.
LIU Wei , CHEN Xiao , CHEN Jing , ZHOU Jin , ZHANG Bin . Review on Knowledge Graph Techniques[J]. Command Control and Simulation, 2021 , 43(6) : 6 -13 . DOI: 10.3969/j.issn.1673-3819.2021.06.002
[1] |
王昊奋, 漆桂林, 陈华钧. 知识图谱方法、实践与应用[M]. 北京: 电子工业出版社, 2019.
|
[2] |
张栋豪, 刘振宇, 郏维强, 等. 知识图谱在智能制造领域的研究现状及其应用前景综述[J]. 机械工程学报, 2021, 57(5):90-113.
|
[3] |
罗玲, 孙学, 唐德波. 知识图谱在战术云服务平台中的应用[J]. 电讯技术, 2020, 60(9):1035-1042.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
黄恒琪, 于娟, 廖晓, 等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6):1-12.
|
[8] |
杭婷婷, 冯钧, 陆佳民. 知识图谱构建技术: 分类、调查和未来方向[J]. 计算机科学, 2021, 48(2):175-189.
|
[9] |
张正航, 钱育蓉, 行艳妮, 等. 知识表示学习方法研究综述[J]. 计算机应用研究, 2021, 38(4):961-967.
|
[10] |
王鑫, 陈蔚雪, 杨雅君, 等. 知识图谱划分算法研究综述[J]. 计算机学报, 2021, 44(1):235-260.
|
[11] |
田莉霞. 知识图谱研究综述[J]. 软件, 2020, 41(4):67-71.
|
[12] |
许华, 刘茂福, 姜丽, 等. 基于语言规则的病症菌实体抽取[J]. 武汉大学学报(理学版), 2015, 61(2):151-155.
|
[13] |
刘显敏, 李建中. 基于键规则的XML实体抽取方法[J]. 计算机研究与发展, 2014, 51(1):64-75.
|
[14] |
张晓艳, 王挺, 陈火旺. 基于混合统计模型的汉语命名实体识别方法[J]. 计算机工程与科学, 2006, 15(6):135-139.
|
[15] |
贾大宇. 基于混合层叠模型的命名实体识别研究[D]. 沈阳:东北大学, 2016.
|
[16] |
张若雨. 基于深度学习的医疗命名实体识别方法研究[D]. 济南:齐鲁工业大学, 2020.
|
[17] |
谢博, 申国伟, 郭春, 等. 基于残差空洞卷积神经网络的网络安全实体识别方法[J]. 网络与信息安全学报, 2020, 6(5):126-138.
|
[18] |
钟华帅. 基于深度学习的实体和关系联合抽取模型研究与应用[D]. 广州: 华南理工大学, 2020.
|
[19] |
孙长志. 基于深度学习的联合实体关系抽取[D]. 上海:华东师范大学, 2019.
|
[20] |
|
[21] |
倪骏. 基于弱监督学习的关系抽取方法研究[D]. 大连:大连理工大学, 2020.
|
[22] |
何霖. 面向非结构化文本的实体属性抽取关键技术研究[D]. 哈尔滨:哈尔滨理工大学, 2020.
|
[23] |
夏翠娟. RDB2RDF标准及应用研究[J]. 现代图书情报技术, 2013, 21(4):10-17.
|
[24] |
赵晓永, 王磊. 电商网页中商品规格信息自动抽取方法研究[J]. 计算机工程与应用, 2017, 53(24):168-171.
|
[25] |
|
[26] |
马忠贵, 倪润宇, 余开航. 知识图谱的最新进展、关键技术和挑战[J]. 工程科学学报, 2020, 42(10):1254-1266.
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
王淮, 杨天长. 网络威胁情报关联分析技术[J]. 信息技术, 2021, 15(2):26-32.
|
[45] |
邢萌, 杨朝红, 毕建权. 军事领域知识图谱的构建及应用[J]. 指挥控制与仿真, 2020, 42(4):1-7.
|
[46] |
韩戈白, 杨绍雄, 王博, 等. 知识图谱在装备大数据上的典型应用[J]. 网络安全技术与应用, 2019, 21(8):69-71.
|
/
〈 |
|
〉 |