随着现代全球卫星导航系统(GNSS)的发展,卫星定位与导航的精度得到明显提升,使得GNSS接收机的应用范围得到大面积扩展。此时,卫星导航系统的完好性成为了限制接收机使用的重要因素。接收机自主完好性监测(RAIM)作为完好性检测链路的末端,相比于其他方法,具有快速监测接收机本地误差的优点。传统RAIM方法大多基于单星故障假设,而伴随着GNSS可用卫星数显著增加,多颗卫星同时发生故障的概率也将增大。同时,在信号恶化场景下,如城市、峡谷、山区等,多星观测量很容易出现粗差。因此,需要研究分析针对多星故障的RAIM算法。为了尽量缩短报警时间和不影响接收机的采样频率,RAIM算法的执行应该相对简单。
目前多星RAIM算法的研究主要集中于最小二乘残差的一致性检验,但也有其他一些不同的检验方法。文献[
1]详细分析了传统w-test迭代方法在多星故障检测时的缺陷。为减小计算量,改进算法在获得初始调整结果后只对检测统计量的相关性进行处理。文献[
2]介绍并改进了三种用于城市环境下的多星故障RAIM方法。这三种方法分别为观测量子集方法、前向-后向方法和Danish方法。同时文中也指出了可分离度检验在避免剔除无故障星方面的重要性。文献[
3]利用现代GNSS的高冗余度,每次迭代时识别两颗故障星,通过牺牲一些正确测量值来识别多星故障。当已知故障卫星数时,奇偶向量法可以用于多星故障检测,但其对矩阵操作较多导致计算量大
[4-5]。利用不同历元的观测量或者引入约束条件,可以重构出被最小二乘完好性算法损失的误差向量
[6-7]。文献[
8]利用故障检测比故障排除简单的特征,首先获取初始无故障星座,再逐步搜索剩余卫星,实现故障排除。
本文结合前向-后向方法,使用改进的w-test算法,每次迭代识别两颗故障星。同时考虑观测量之间的相关性,进行可分离度检验。后向时,针对每颗被剔除卫星,只通过计算该星的残差而不是最小二乘估计来判断剔除是否正确,从而减小计算量。