1 时间约束下产品二维保修可用度模型
1.1 模型假设
1.2 模型符号
1.3 不完全预防性维修
λ0(t)=λ(t) (0<t<T1)
λ1(t)=λ(t-δT1) (T1 <t<T2)
λ2(t)=λ(t-δT2) (T2 <t<T3)
…
λi(t)=λ(t-δTi) (Ti <t<Ti+1)
2 可用度模型建立
A(T0,U0)= (U0/r-D1(T0,U0))/(U0/r)g(r)dr+
(U0/r-D2(T0,U0))/(U0/r)g(r)dr+
…+ (U0/r-Dn(T0,U0))/(U0/r)g(r)dr+
(U0/r-Dn+1(T0,U0))/(U0/r)g(r)dr+
(T0-Dn+2(T0,U0))/T0g(r)dr
3 算例分析
表1 参数设置 |
参数名称 | 参数值 |
---|---|
δ | 0.8 |
Tp/天 | 3 |
Tf/天 | 7 |
θ0 | 4×10-7 |
θ1 | 2×10-7 |
θ2 | 0.8×10-7 |
θ3 | 1.5×10-7 |
表2 不同预防性维修时间的可用度 |
T1 | ||||||||
---|---|---|---|---|---|---|---|---|
330 | 340 | 350 | 360 | 370 | 380 | 390 | ||
690 | 90.22% | 90.20% | 90.17% | 90.13% | 90.07% | 90.00% | 89.92% | |
700 | 90.26% | 90.25% | 90.22% | 90.19% | 90.14% | 90.07% | 90.00% | |
710 | 90.28% | 90.27% | 90.26% | 90.23% | 90.19% | 90.13% | 90.07% | |
T2 | 720 | 90.28% | 90.29% | 90.28% | 90.26% | 90.22% | 90.18% | 90.12% |
730 | 90.28% | 90.28% | 90.29% | 90.27% | 90.25% | 90.21% | 90.15% | |
740 | 90.25% | 90.27% | 90.28% | 90.27% | 90.25% | 90.22% | 90.18% | |
750 | 90.22% | 90.24% | 90.26% | 90.26% | 90.24% | 90.22% | 90.18% |
4 结果分析
表3 不同时间约束和修复因子对应的保修可用度 |
方案 | 时间约束 | 修复因子δ | 最高可用度A/% | ||
---|---|---|---|---|---|
(1) | [330,390] [690,750] | 0.8 | 366 | 702 | 90.29 |
(2) | [330,390] [750,810] | 0.8 | 390 | 750 | 90.18 |
(3) | [330,390] [790,850] | 0.8 | 390 | 850 | 89.91 |
(4) | [390,450] [690,750] | 0.8 | 390 | 710 | 90.26 |
(5) | [420,480] [690,750] | 0.8 | 420 | 730 | 90.13 |
(6) | [420,480] [690,750] | 0.75 | 420 | 690 | 89.08 |
(7) | [420,480] [690,750] | 0.85 | 420 | 730 | 91.07 |
(8) | [420,480] [690,750] | 0.9 | 420 | 730 | 91.90 |