Command Control and Simulation >
The Optimal Path Planning Method for Navy Ships Formation Cooperative Call Antisubmarine Search
Received date: 2016-11-03
Revised date: 2016-12-07
Online published: 2022-05-20
For navy ships formation cooperative call search problem of moving target, set up and optimize multiple search path planning model, and considering the sonar searching effective width and Angle effect on detecting ability, According to the planning model, we design a genetic algorithm with adaptive population co-evolution, more use of competitive exclusion principle guiding multiple populations, maintain differentiation between the various groups and the overall coordination and orderly, to improve the search efficiency, Through classification and within the population evolution selection, adaptive crossover and targeted mutation improved genetic operation, ensure the spread of dominant genes, and accelerate the convergence speed, dynamically adjust the balance of the global search and local search, avoid evolved into local optimum, Based on the direction of the unknown target motion of collaborative search example simulation, obtained the collaborative search optimal path, compared with conventional call search methods show that the method in terms of global optimization and search efficiency has some advantages, is suitable for solving the formation cooperative call antisubmarine search problem.
ZHAO Liang , REN Yao-feng , ZHANG Xian . The Optimal Path Planning Method for Navy Ships Formation Cooperative Call Antisubmarine Search[J]. Command Control and Simulation, 2017 , 39(2) : 24 -30 . DOI: 10.3969/j.issn.1673-3819.2017.02.006
[1] |
杨日杰, 何友, 孙明太. 航空搜潜装备搜潜范围建模与仿真研究[J]. 系统仿真学报, 2003, 15(11):1547-1549
|
[2] |
屈也频, 廖英. 潜艇位置散布规律与搜潜效能评估模型研究[J]. 系统仿真学报, 2008, 20(12):3281-3282.
|
[3] |
|
[4] |
On sonar performance estimation for separated source and receiver[R]. AD-A068956/2SL.
|
[5] |
瓦格纳, 迈兰德, 森德. 海军运筹分析[M]. 第3版.姜青山,郑保华译. 北京: 国防工业出版社, 2008.
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
巩敦卫. 协同进化遗传算法理论及应用[M]. 北京: 科学出版社, 2009.
|
[11] |
|
[12] |
张鹏. 多蜂群协同进化算法及其应用研究[D]. 山东师范大学, 2014.
|
[13] |
苗金凤. 协同进化遗传算法在多目标优化中的应用研究[D]. 山东师范大学, 2011.
|
[14] |
李碧, 郝志峰. 协同进化算法及其应用[M]. 北京: 科学出版社, 2013.
|
[15] |
|
[16] |
房磊, 张焕春, 经亚枝. 一种模糊自适应遗传算法[J]. 西南交通大学学报, 2005, 40(1):22-25.
|
[17] |
张献, 任耀峰, 王润芃. 基于自适应变异遗传算法的连续时空最优搜索路径规划[J]. 兵工学报, 2015, 36(12):2389-2392.
|
[18] |
黄卫华, 许小勇, 范建坤. 实数编码遗传算法中常用变异算子的Matlab实现及应用[J]. 轻工科技, 2007, 23(1):77-78.
|
[19] |
李欣. 自适应遗传算法的改进与研究[D]. 南京信息工程大学, 2008.
|
[20] |
门金柱, 周明, 伦九凯. 反潜编队应召搜索能力计算及效果评估[J]. 指挥控制与仿真, 2008, 30(1):32-34.
|
/
〈 |
|
〉 |