车载光电稳定平台伺服系统,主要由稳定平台与光电探测设备构成,用于对目标物体进行探测、识别、捕捉、跟踪以及瞄准。光电稳定平台作为光电探测设备的支撑载体,其控制的精度直接关系到光电探测设备视轴的准确性,影响伺服系统的整体性能
[1]。而在实际工况中,稳定平台伺服系统会受到诸如内部摩擦力矩、外部路面扰动以及负载转矩与内部参数时变等非线性因素的影响。这些因素影响了稳定平台的控制精度,使平台上光电设备的视轴产生偏移,导致系统对目标跟踪的精度下降,产生误差,使得后续对目标打击的精度降低
[2-3]。因此,为了保证光电探测设备在车辆行进等实际工况下视轴稳定,对目标物体进行高精度追踪,从而进行高效精准的打击,有必要针对其支承载体——稳定平台伺服系统的控制算法进行有效设计。
在光电测量平台伺服系统中采用无刷直流力矩电机(Brushless DC Motors,BLDCM)作为驱动电机,以电机的输出轴配合齿轮箱带动稳定平台运动
[4]。而在实际的工作中,传统的PID控制方法无法克服电机中的非线性扰动因素,导致控制电机的鲁棒性较差。而滑模变结构控制(Sliding Mode Control,SMC)具有对扰动与参数不敏感,响应速度快等优点,其鲁棒性强,近年来广泛应用于各类控制算法中
[5⇓⇓-8]。本文主要基于滑模控制对系统的控制器进行有效设计,然而,传统的滑模控制在实际的开关控制中存在因不可避免的时间延迟以及空间滞后问题带来的高频抖震现象,会造成不必要的能量损失,导致系统的整体性能下降,因此,削弱滑模控制中控制器的输出抖震十分必要。针对这一问题,国内外众多学者提出了许多改进趋近率的滑模控制方法来减少其中的抖震,缩短系统的响应时间
[9⇓-11]。本文使用一种改进的滑模趋近率对控制器进行设计,在系统误差快速收敛的同时,削弱控制器输出的抖震,进而提高系统的总体性能。
RBF神经网络具有很强的泛化能力,其网络结构简单,可以避免繁琐的计算,其可以在一个紧凑集与任意精度下,逼近任意的非线性函数
[12]。在控制器的设计中,可以利用此优点对系统未建模部分加以逼近补偿,将其与鲁棒性较强的SMC结合起来,以设计高精度的控制。并且,针对系统运行时的负载扰动,设计了负载观测器
[13],用观测值替换原控制率中的高增益开关函数,以达到削弱控制器输出抖震的效果。仿真结果表明:该控制方法削弱了传统滑模控制中输出抖震的问题,加快了动态响应速度,提高了测量平台的位置控制精度,大幅度改善了系统性能。