
Heterogeneous Cooperative Unmanned System Mission Planning Method
MA Shuo, MA Ya-ping
Heterogeneous Cooperative Unmanned System Mission Planning Method
To solve the problem of cooperative operation of heterogeneous unmanned system, a mission planning model of unmanned system and a task scheme optimization method based on genetic algorithm are proposed. The directed acyclic graph and path graph are used to describe the cooperative relationship between tasks, the task alliance and its corresponding task sequence are used as the chromosome individual coding of genetic algorithm, and the genetic crossover operator is realized by the transformation between task alliances; the genetic mutation method of task alliance and task sequence is designed to optimize the proportional structure of the task alliances and the distribution of workload. The simulation results show that this method can solve the mission planning problem of heterogeneous unmanned system. Compared with existing research work, it has better versatility.
unmanned system; cooperative operation; mission planning; grouping; genetic algorithm {{custom_keyword}};
表1 任务联盟{V1,V2,V4}的任务序列 |
编号 | ST | T1 | T2 | T3 | T4 | T5 | T6 | ET |
---|---|---|---|---|---|---|---|---|
V1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
V2 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
V4 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 |
表2 拓扑排序结果以及相应路径代价 |
编号 | 任务序列拓扑排序 | 路径代价 |
---|---|---|
1 | {ST,T1,T2,T3,T4,ET} | 272.2 |
2 | {ST,T1,T2,T4,T3,ET} | 293.1 |
3 | {ST,T1,T3,T2,T4,ET} | 270.6 |
4 | {ST,T1,T3,T4,T2,ET} | 302.3 |
5 | {ST,T1,T4,T2,T3,ET} | 212.8 |
6 | {ST,T1,T4,T3,T2,ET} | 223.7 |
7 | {ST,T2,T1,T3,T4,ET} | 286.6 |
8 | {ST,T2,T1,T4,T3,ET} | 228.8 |
9 | {ST,T2,T3,T1,T4,ET} | 206.3 |
10 | {ST,T3,T1,T2,T4,ET} | 276.6 |
11 | {ST,T3,T1,T4,T2,ET} | 228.0 |
12 | {ST,T3,T2,T1,T4,ET} | 197.9 |
表3 任务联盟变异概率示例 |
任务联盟 | 个数 | 比例 | 变异概率 |
---|---|---|---|
V1,V2,V3 | 7 | 0.2592 | 0.0979 |
V1,V2,V4 | 1 | 0.037 | 0.6852 |
V1,V3,V4 | 15 | 0.0556 | 0.0457 |
V2,V3,V4 | 4 | 0.1481 | 0.1713 |
表4 变异前任务序列及路径代价 |
无人系统编号 | 原任务序列 | 路径代价 |
---|---|---|
V1 | T1 T3 T4 T5 T6 | 222.8 |
V2 | T4 | 110.2 |
V4 | T1 T2 T5 | 154.1 |
表5 变异后任务序列及路径代价 |
无人系统编号 | 原任务序列 | 路径代价 |
---|---|---|
V1 | T1 T3 T4 T6 | 128.9 |
V2 | T4 T5 | 58.1 |
V4 | T1 T2 T5 | 87.2 |
表6 优化结果 |
SIZE=2 | SIZE=3 | SIZE=4 | |
---|---|---|---|
路径代价 | 395 | 407 | 429 |
任务联盟 | {V1,V4} | {V1,V2,V4} | {V1,V2,V3,V4} |
任务序列 | V1:{T1,T2,T5,T6} V4:{T1,T2,T4,T5} | V1:{T3,T1,T6} V2:{T5} V4:{T1,T4,T2,T5} | V1:{T3,T1,T6} V1:{T5} V1:{T5} V1:{T2,T1,T4} |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
邓启波. 多无人机协同任务规划技术研究[D]. 北京:北京理工大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
黄长强. 多无人机协同作战技术[M]. 北京: 国防工业出版社, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
郜晨. 多无人机自主任务规划方法研究[D]. 南京:南京航空航天大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
汤可宗, 杨静宇. 群智能优化方法及应用[M]. 北京: 科学出版社, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |