
Research on algorithm and simulation of acoustic signal denoising based on improved wavelet threshold
SHI Xuewei, XU Dalin, LIU Zhicheng, XU Zhiyan
Research on algorithm and simulation of acoustic signal denoising based on improved wavelet threshold
Due to the low signal-to-noise ratio of raw data, the reliability of data and the accuracy of acoustic source localization are severely affected by fiber optic acoustic sensing technology. To address this issue, this study optimizes the wavelet thresholding method. Firstly, a novel thresholding function is proposed, which achieves denoising while preserving key information through shape adjustment factors. It combines the advantages of both hard and soft threshold functions and has high flexibility and controllability. Secondly, an adaptive threshold calculation method is introduced, utilizing an improved simulated annealing algorithm to optimize threshold selection, reducing the algorithm’s dependence on threshold parameter selection. Through simulation experiments, it has been verified that this research method effectively suppresses noise in the signal and improves data availability. Compared to the original methods, this approach significantly improves the signal-to-noise ratio and demonstrates robustness in simulated tests of real signals.
fiber optic acoustic sensing technology; wavelet thresholding denoising; thresholding function; simulated annealing algorithm {{custom_keyword}};
Tab.1 Denoising effect of various wavelet bases表1 各小波基去噪效果 |
小波基 | 信噪比/dB |
---|---|
haar | 5.036 0 |
sym8 | 7.775 9 |
db9 | 7.705 4 |
coif2 | 7.286 6 |
bior2.4 | 6.897 5 |
Tab.2 Noise reduction effect of each decomposition level表2 各分解层数去噪效果 |
分解层数 | 信噪比/dB |
---|---|
2 | 9.124 7 |
3 | 10.167 0 |
4 | 7.775 9 |
5 | 4.317 9 |
Tab.3 Add 5 dB white noise denoising indicators表3 加入5 dB白噪声去噪指标 |
去噪算法 | 信噪比/dB | 均方误差 | 波形互相关系数 |
---|---|---|---|
小波硬阈值去噪 | 8.670 4 | 0.010 2 | 0.925 |
小波软阈值去噪 | 10.167 0 | 0.008 9 | 0.934 |
本文方法 | 16.758 3 | 0.003 1 | 0.962 |
Tab.4 Adding 5 dB real noise denoising indicators表4 加入5 dB真实噪声去噪指标 |
去噪算法 | 信噪比/dB | 均方误差 | 波形互相关系数 |
---|---|---|---|
小波硬阈值去噪 | 5.674 7 | 0.157 6 | 0.831 |
小波软阈值去噪 | 7.573 4 | 0.011 9 | 0.914 |
本文方法 | 10.897 2 | 0.008 4 | 0.935 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
李柯, 龚岩栋, 张卓. φ-OTDR降噪处理的研究进展[J]. 激光与光电子学进展, 2022, 59(23): 25-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
张芳. 扩频光时域反射技术理论与空间定位应用研究[D]. 秦皇岛: 燕山大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
汪豫. 基于Ф-OTDR的光纤振动传感关键技术研究[D]. 成都: 电子科技大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
蒋浩. 基于Φ-OTDR的管道第三方破坏监测技术研究[D]. 杭州: 浙江大学, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
吕龙宝, 庞拂飞, 刘奂奂, 等. 基于奇异值分解的Φ-OTDR相位提取[J]. 光通信技术, 2018, 42(9): 51-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
齐晓辉, 宋宛鸿, 李文召. 一种改进的小波去噪方法在OTDR中的应用[J]. 光通信技术, 2021, 45(4): 54-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
陈霄, 徐慨, 王潋, 等. 基于小波去噪和三阶全息图的时延估计算法[J]. 指挥控制与仿真, 2015, 37(4): 69-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |